APPROACHES TO ADDRESS RACIAL BIAS IN FINANCIAL SERVICES: LESSONS FOR THE INSURANCE INDUSTRY

Link: https://www.casact.org/sites/default/files/2022-03/Research-Paper_Approaches-to-Address-Racial-Bias_0.pdf?utm_source=Landing+Page&utm_medium=Website&utm_campaign=RIP+Series

Graphic:

Excerpt:

The goal of this paper is to equip actuaries to proactively participate in
discussions and actions related to potential racial biases in insurance
practices. This paper uses the following definition of racial bias:
Racial bias refers to a system that is inherently skewed along racial lines.
Racial bias can be intentional or unintentional and can be present in the
inputs, design, implementation, interpretation or outcomes of any system.
To support actuaries and the insurance industry in these efforts, this paper
examines issues of racial bias that have impacted four areas of noninsurance financial services — mortgage lending, personal lending,
commercial lending and the underlying credit-scoring systems — as well
as the solutions that have been implemented in these sectors to address
this bias. Actuaries are encouraged to combine this information on
solutions and gaps in other industries with expertise in their practice areas
to determine how, if at all, this information could be applied to identify
potential racial biases impacting insurance or other industries in which
actuaries work.
Parallels can be drawn between the issues noted here in financial services
and those being discussed within the insurance industry. While many
states have long considered race to be a protected class which cannot be
used for insurance business decisions, regulators and consumer groups
have brought forth concerns about potential racial bias implicit in existing
practices or apparent in insurance outcomes. State regulators are taking
individual actions to address potential issues through prohibition of
certain rating factors, and even some insurers are proactively calling for
the industry to move away from using information thought to be
correlated with race. However, this research suggests that government
prohibition of specific practices may not be a silver-bullet solution.
Actuaries can play a key role as the insurance industry develops
approaches to test for, measure and address potential racial bias, and
increase fairness and equality in insurance, while still maintaining riskbased pricing, company competitiveness and solvency.

Author(s): Members of the 2021 CAS Race and Insurance Research Task Force

Publication Date: March 2022

Publication Site: CAS

UNDERSTANDING POTENTIAL INFLUENCES OF RACIAL BIAS ON P&C INSURANCE: FOUR RATING FACTORS EXPLORED

Link: https://www.casact.org/sites/default/files/2022-03/Research-Paper_Understanding_Potential_Influences.pdf?utm_source=III&utm_medium=Issue+Brief&utm_campaign=RIP

Graphic:

Excerpt:

Insurance rating characteristics have come under scrutiny by legislators and
regulators in their efforts to identify and address racial bias in insurance
practices. The goal of this paper is to equip actuaries with the information
needed to proactively participate in industry discussions and actions related
to racial bias and insurance rating factors. This paper uses the following
definition of racial bias:
Racial bias refers to a system that is inherently skewed along racial lines.
Racial bias can be intentional or unintentional and can be present in the
inputs, design, implementation, interpretation, or outcomes of any system.
This paper will examine four commonly used rating factors in personal
lines insurance — credit-based insurance score, geographic location, home
ownership, and motor vehicle records — to understand how the data
underlying insurance pricing models may be impacted by racially biased
policies and practices outside of the system of insurance. Historical issues
like redlining and racial segregation, as well as inconsistent enforcement of
policies and practices contribute to this potential bias. These historical
issues do not necessarily change the validity of the actuarial approach of
evaluating statistical correlation of rating factors to insurance loss overall.
Differences in the way individual insurers build rating models may produce
very different end results for customers. More data and analyses are
needed to understand if and to what extent these specific issues of racial
bias impact insurance outcomes. Actuaries and other readers can combine
this information with their own subject matter expertise to determine if and
how this could impact the systems for which they are responsible, and what
actions, if any, could be taken as a result.

Author(s): Members of the 2021 CAS Race and Insurance Research Task Force

Publication Date: March 2022

Publication Site: CAS

DEFINING DISCRIMINATION IN INSURANCE

Link: https://www.casact.org/sites/default/files/2022-03/Research-Paper_Defining_Discrimination_In_Insurance.pdf?utm_source=III&utm_medium=Issue+Brief&utm_campaign=RIP+Series

Graphic:

Excerpt:

This research paper is designed to introduce various terms used in defining
discrimination by stakeholders in the insurance industry (regulators, consumer
advocacy groups, actuaries and insurers, etc.). The paper defines protected class,
unfair discrimination, proxy discrimination, disproportionate impact, disparate
treatment and disparate impact.
Stakeholders are not always consistent in their definitions of these terms, and
these inconsistencies are highlighted and illustrated in this paper. It is essential to
elucidate key elements and attributes of certain terms as well as conflicting
approaches to defining discrimination in insurance in order to move the industry
discussion forward.
While this paper does not make a judgment on the appropriateness of the
definitions put forth, nor does it promulgate what the definitions should be,
readers will be empowered to understand the components of discrimination terms
used in insurance, as well as be introduced to the potential implications for
insurers.
Actuaries who have a strong foundational knowledge of these terms are likely to
play a key role in informing those who define and refine these terms for insurance
purposes in the future. This paper is not a legal review, and thus discusses terms
and concepts as they are used by insurance stakeholders, rather than what their
ultimate legal definition will be. However, it is important for actuaries to
understand the point of view of various stakeholders, and the potential impact it
could have on actuarial work. As the regulatory and legislative landscape
continues to shift, this brief should be considered a living document, that will
periodically require update.

Author(s): Kudakwashe F. Chibanda, FCAS

Publication Date: March 2022

Publication Site: CAS

Biological and Psychobehavioral Correlates of Credit Scores and Automobile Insurance Losses: Toward an Explication of Why Credit Scoring Works

Link: https://www.jstor.org/stable/4138424

Graphic:

Abstract:

The most important new development in the past two decades in the personal lines of insurance may well be the use of an individual’s credit history as a classification and rating variable to predict losses. However, in spite of its obvious success as an underwriting tool, and the clear actuarial substantiation of a strong association between credit score and insured losses over multiple methods and multiple studies, the use of credit scoring is under attack because there is not an understanding of why there is an association. Through a detailed literature review concerning the biological, psychological, and behavioral attributes of risky automobile drivers and insured losses, and a similar review of the biological, psychological, and behavioral attributes of financial risk takers, we delineate that basic chemical and psychobehavioral characteristics (e.g., a sensation-seeking personality type) are common to individuals exhibiting both higher insured automobile loss costs and poorer credit scores, and thus provide a connection which can be used to understand why credit scoring works. Credit scoring can give information distinct from standard actuarial variables concerning an individual’s biopsychological makeup, which then yields useful underwriting information about how they will react in creating risk of insured automobile losses.

Author(s): Patrick L. Brockett and Linda L. Golden

Publication Date: originally 2007

Publication Site: jstor, The Journal of Risk and Insurance

Cite: Brockett, Patrick L., and Linda L. Golden. “Biological and Psychobehavioral Correlates of Credit Scores and Automobile Insurance Losses: Toward an Explication of Why Credit Scoring Works.” The Journal of Risk and Insurance, vol. 74, no. 1, 2007, pp. 23–63. JSTOR, http://www.jstor.org/stable/4138424. Accessed 22 May 2022.